skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kirby, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Classical shadows (CS) offer a resource-efficient means to estimate quantum observables, circumventing the need for exhaustive state tomography. Here, we clarify and explore the connection between CS techniques and least squares (LS) and regularized least squares (RLS) methods commonly used in machine learning and data analysis. By formal identification of LS and RLS ``shadows'' completely analogous to those in CS---namely, point estimators calculated from the empirical frequencies of single measurements---we show that both RLS and CS can be viewed as regularizers for the underdetermined regime, replacing the pseudoinverse with invertible alternatives. Through numerical simulations, we evaluate RLS and CS from three distinct angles: the tradeoff in bias and variance, mismatch between the expected and actual measurement distributions, and the interplay between the number of measurements and number of shots per measurement.Compared to CS, RLS attains lower variance at the expense of bias, is robust to distribution mismatch, and is more sensitive to the number of shots for a fixed number of state copies---differences that can be understood from the distinct approaches taken to regularization. Conceptually, our integration of LS, RLS, and CS under a unifying ``shadow'' umbrella aids in advancing the overall picture of CS techniques, while practically our results highlight the tradeoffs intrinsic to these measurement approaches, illuminating the circumstances under which either RLS or CS would be preferred, such as unverified randomness for the former or unbiased estimation for the latter. 
    more » « less
  2. Metamaterials are composite structures whose extraordinary properties arise from a mesoscale organization of their constituents. Here, we introduce a different material class—viscosity metafluids. Specifically, we demonstrate that we can rapidly drive large viscosity oscillations in shear-thickened fluids using acoustic perturbations with kHz to MHz frequencies. Because the timescale for these oscillations can be orders of magnitude smaller than the timescales associated with the global material flow, we can construct metafluids whose resulting time-averaged viscosity is a composite of the thickened, high-viscosity and dethickened, low-viscosity states. We show that viscosity metafluids can be used to engineer a variety of unique properties including zero, infinite, and negative viscosities. The high degree of control over the resulting viscosity, the ease with which they can be accessed, and the variety of exotic properties achievable make viscosity metafluids attractive for uses in technologies ranging from coatings to cloaking to 3D printing. Published by the American Physical Society2024 
    more » « less
  3. Abstract The magnetic properties of permalloy-based trilayers of the form Py 0.8 Cu 0.2 /Py 0.4 Cu 0.6 /Py/IrMn were studied as the spacer layer undergoes a paramagnetic to ferromagnetic phase transition. We find the coupling between the free Py 0.8 Cu 0.2 layer and the exchange bias pinned Py to be strongly temperature-dependent: there is negligible coupling above the Curie temperature of the Py 0.4 Cu 0.6 spacer layer, strong ferromagnetic coupling below that temperature, and a tunable coupling between these extremes. Polarized neutron reflectometry was used to measure the depth profile of the magnetic order in the system, allowing us to correlate the order parameter with the coupling strength. The thickness dependence shows that these are interface effects with an inverse relationship to thickness, and that there is a magnetic proximity effect that enhances the Curie temperature of the spacer layer with characteristic length scale of about 7 nm. As a demonstration of potential functionality of such a system, the structure is shown to spontaneously flip from the antiparallel to parallel magnetic configuration once the spacer layer has developed long-range magnetic order. 
    more » « less
  4. The effect of oxygen reduction on the magnetic properties of LaFeO3−δ (LFO) thin films was studied to better understand the viability of LFO as a candidate for magnetoionic memory. Differences in the amount of oxygen lost by LFO and its magnetic behavior were observed in nominally identical LFO films grown on substrates prepared using different common methods. In an LFO film grown on as-received SrTiO3 (STO) substrate, the original perovskite film structure was preserved following reduction, and remnant magnetization was only seen at low temperatures. In a LFO film grown on annealed STO, the LFO lost significantly more oxygen and the microstructure decomposed into La- and Fe-rich regions with remnant magnetization that persisted up to room temperature. These results demonstrate an ability to access multiple, distinct magnetic states via oxygen reduction in the same starting material and suggest LFO may be a suitable materials platform for nonvolatile multistate memory. 
    more » « less
  5. We demonstrate machine-learning-enhanced Bayesian quantum state tomography on near-term intermediate-scale quantum hardware. Our approach to selecting prior distributions leverages pre-trained neural networks incorporating measurement data and en-ables improved inference times over standard prior distributions. 
    more » « less
  6. Abstract Cobalt oxides have long been understood to display intriguing phenomena known as spin-state crossovers, where the cobalt ion spin changes vs. temperature, pressure, etc. A very different situation was recently uncovered in praseodymium-containing cobalt oxides, where a first-order coupled spin-state/structural/metal-insulator transition occurs, driven by a remarkable praseodymium valence transition. Such valence transitions, particularly when triggering spin-state and metal-insulator transitions, offer highly appealing functionality, but have thus far been confined to cryogenic temperatures in bulk materials (e.g., 90 K in Pr1-xCaxCoO3). Here, we show that in thin films of the complex perovskite (Pr1-yYy)1-xCaxCoO3-δ, heteroepitaxial strain tuning enables stabilization of valence-driven spin-state/structural/metal-insulator transitions to at least 291 K, i.e., around room temperature. The technological implications of this result are accompanied by fundamental prospects, as complete strain control of the electronic ground state is demonstrated, from ferromagnetic metal under tension to nonmagnetic insulator under compression, thereby exposing a potential novel quantum critical point. 
    more » « less